New Standards for Craniofacial Growth

Richard J. Sherwood^{1,2}, Dana L. Duren^{1,2}, Kieran P. McNulty³,

Manish Valiathan⁵, Hee Soo Oh⁴, Kevin M. Middleton¹

⁵ Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University ⁴ Dept. of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific,

Craniofacial Research Center

INTRODUCTION

- The Craniofacial Growth Consortium Study (CGCS) consists of the largest sample of longitudinal craniofacial growth records assembled.
- Longitudinal growth data in untreated subjects provide:
 - Craniofacial growth knowledge
 - Norm or craniofacial growth standards for orthodontic diagnosis and treatment planning
 - Control group when evaluating interventions during the growth period.
- Understanding the timing of growth milestones (e.g., age at peak growth velocity, age at cessation of growth) is critical for developing individualized orthodontic growth modification strategies.
- The objective of this poster is to discuss our approach to building and presenting new percentile growth curves for craniofacial measures.

SAMPLE AND MODELLING

Sample

- 17,256 lateral cephalograms from the Craniofacial Growth Consortium Study (Sherwood et al., 2021).
- Females and males ages 2.5 to 28 years
- 1055 Males, 1044 Females (median 9 cephalograms per individual)
- Triple-determined 2D landmarks from lateral cephalograms
- 12 interlandmark distance measurements
 - Derived traits represent mandibular, facial, and basicranial traits

Modelling

- Double logistic growth model (Bock et al., 1973), with pre-pubertal and adolescent growth stages
- Six parameters, including asymptotic measure (f) and prepubertal contribution (a_1) , and separate initial rates $(b_1$ and $b_2)$ and ages (c_1, c_2) c_2) at peak growth velocity.

$$y = \frac{a_1}{1 + \exp(-b_1(age - c_1))} + \frac{J - a_1}{1 + \exp(-b_2(age - c_2))}$$

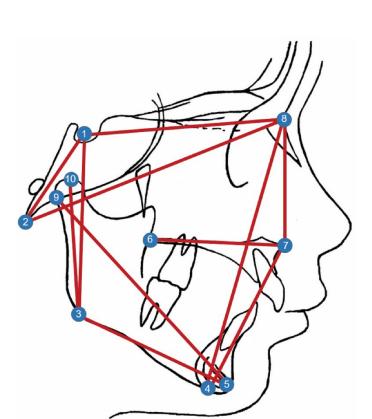
- Multilevel models with separate intercept terms for individual.
- Bayesian inference address the challenges of parameter estimation (e.g., via maximum likelihood)
 - Models estimated using stan programming language (Gelman et al. 2015; Carpenter et al. 2017) via the rethinking package in R.
 - Four parallel chains sampled for 10⁴ iterations yields ~4,000 effective samples and \hat{R} values of 1.

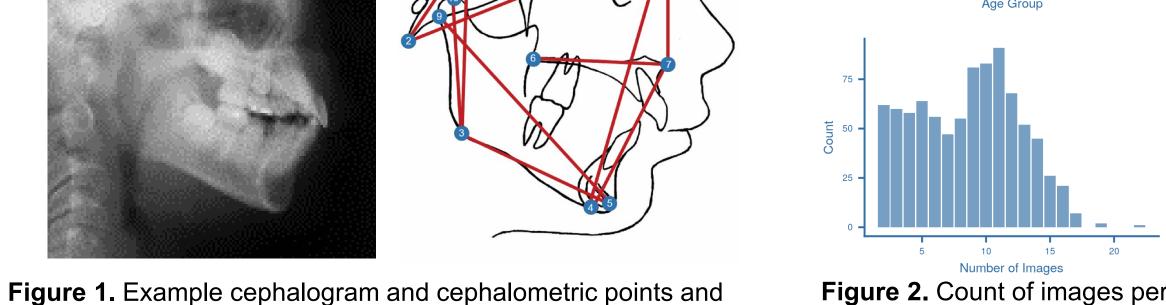
Percentiles

- Percentile curves were estimated from growth models
- 10-fold cross validation was carried out to test the adequacy of the growth model and estimated percentiles for these traits.
- For each of 10 folds, a Bayesian the model was fit to 90% of the data, and the remaining 10% was used as a test set.
- For each test observation, we determined if that observation fell within the middle 50% and 98% posterior prediction intervals.

Web Interface

R-Shiny (shiny.rstudio.com) was used to build a web-interface to provide users the ability to estimate sex-specific percentile scores on 12 twelve traits for individuals





individual and distribution by age.

measures.

REFERENCES

Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian Computation in Population Genetics. Genetics 162:2025–2035. Bock RD, Wainer H, Petersen A, Thissen D, Murray J, Roche A. 1973. A parameterization for individual human growth curves. Hum Biol 45:63-80.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. 2017. Stan: A probabilistic programming language. J Stat Softw 76

Gelman A, Lee D, Guo J. 2015. Stan: a probabilistic programming language for Bayesian inference and optimization. J Educ Behav Stat:1076998615606113

Sherwood, R.J. H.S. Oh, M. Valiathan, K.P. McNulty, D.L. Duren, R.P. Knigge, A.M. Hardin, C.L. Holzhauser, K.M. Middleton. 2021. Bayesian Approach to Longitudinal Craniofacial Growth: The Craniofacial Growth Consortium Study. Anat. Rec. 304:991-1019. PMID:33015973. PMCID: PMC8577187

RESULTS

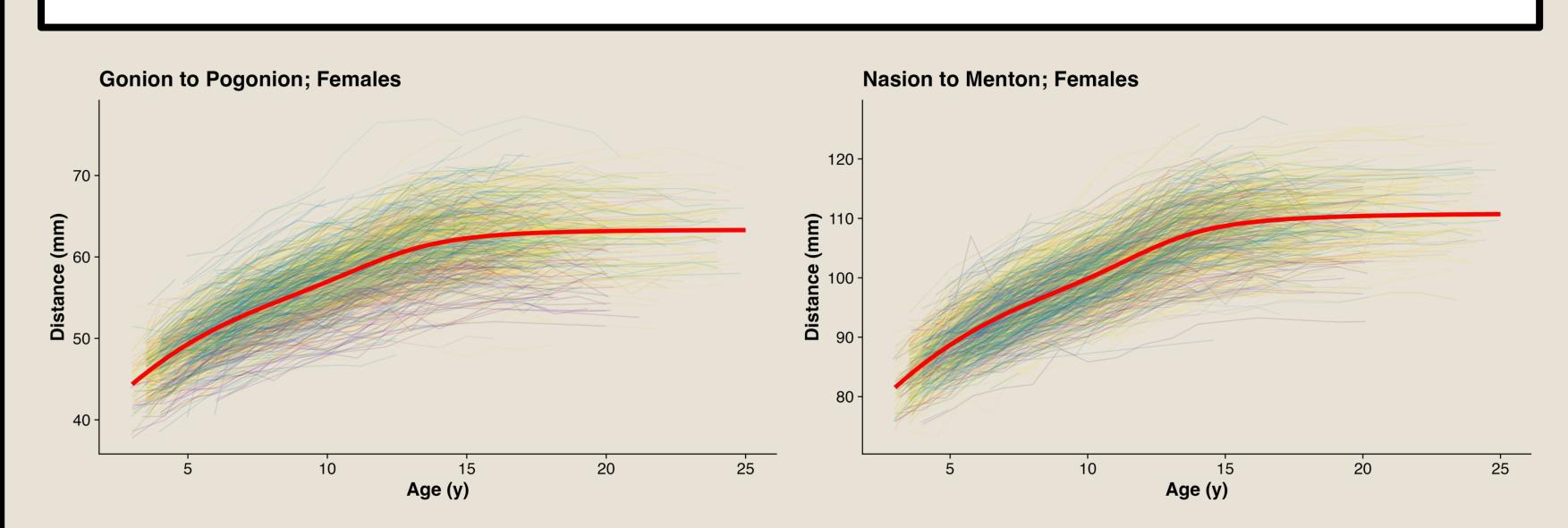
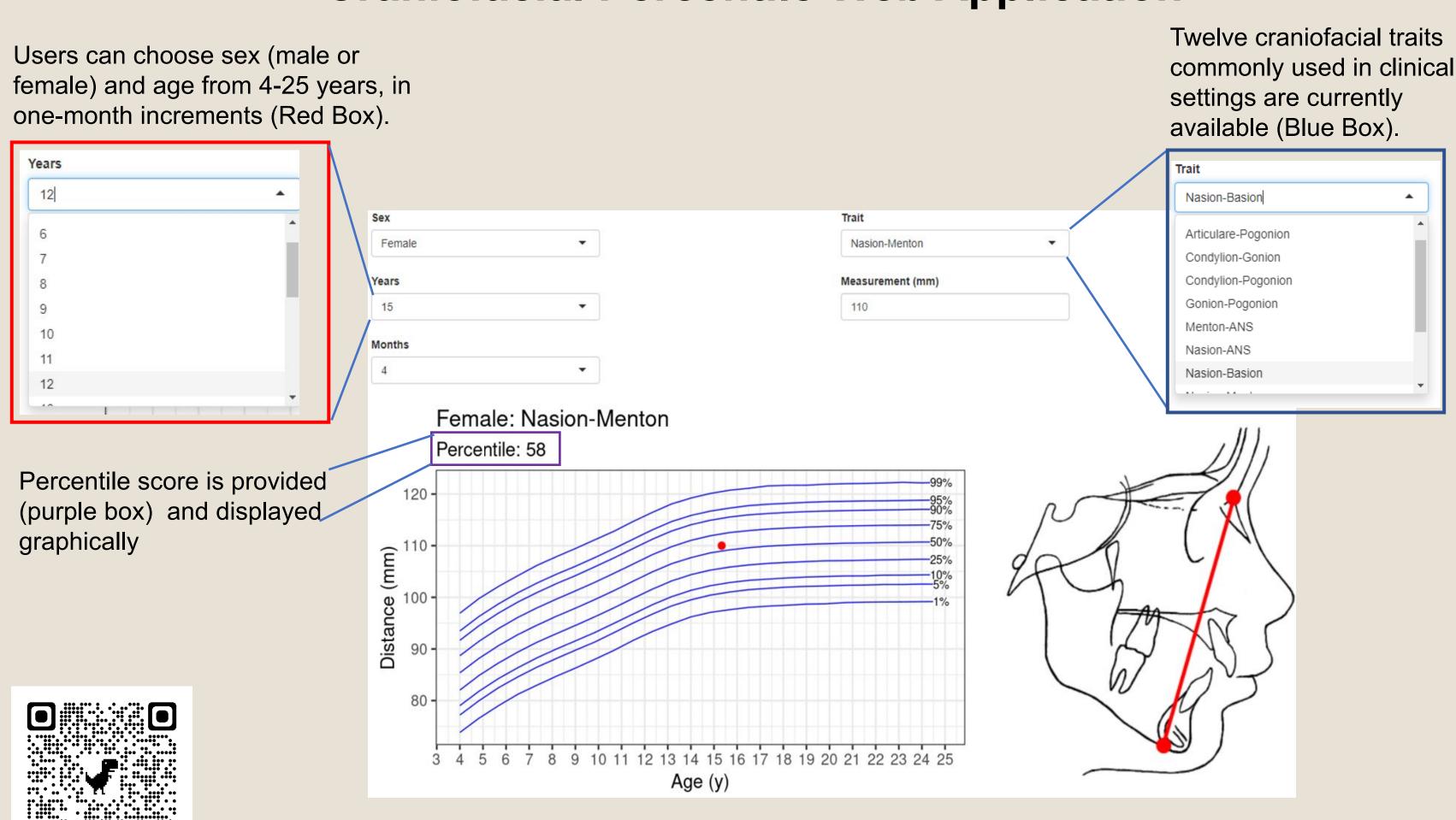


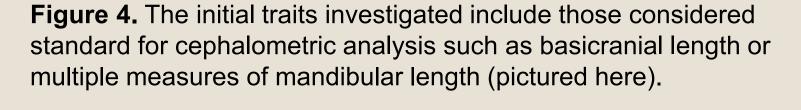
Figure 3. Examples of double-logistic growth curves (upper images) for two craniofacial traits in females (Distance from Gonion to Pogonion; Distance from Nasion to Menton) using the CGCS sample

Craniofacial Percentile Web Application



Use QR code (above) to access Web Application





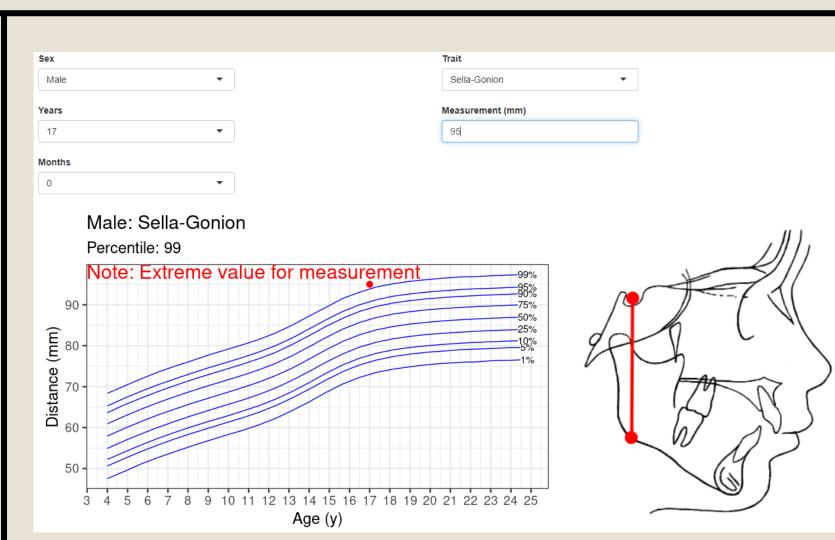


Figure 5. The program will alert the user if a trait value falls above the 99th, or below the 1st, percentile for the chosen trait.

CONCLUSIONS

- We have previously shown that Bayesian multilevel modelling addresses many challenges of craniofacial growth estimation using polynomials (Sherwood et al., 2021).
 - Double-logistic growth models include biologically meaningful parameters of PGV, aPGV, and age at growth cessation.
- Population-level percentile interval standards can be estimated from measurements based on the CGCS as a representative sample.
- Cross validation showed that approximately half of observations in the test set were found within the middle 50% posterior predictive interval and 98% were in the corresponding 98% interval.
- Percentile curves can be used by clinicians to rapidly identify and localize possible growth disparities in young patients. The percentiles provided cover a range of craniofacial traits and are based on a large, geographically diverse sample. R-shiny provides a simple means for interactive web-based clinical tools.

ACKNOWLEDGEMENTS

- Research reported in this publication was supported by the National Institute Of Dental & Craniofacial Research of the National Institutes of Health R01DE024732; R01DE024732-06S1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the
- Additional support was provided by the American Association of Orthodontists Foundation, and the TRIUMPH Initiative, U. Missouri School of Medicine
- Data collectors included Kim Lever, Christina Holzhauser, Nicole Odom, Nicole Dedrick, Heather Craig, Alice Walton, Lori Clark, Sharon Lawrence,
- Torrey Taylor, Beverly Barry, Mona Awadi, Chanyara Seng, Shiva Naicker, Tae Keong Kim. We are particularly grateful for the participants of the individual growth studies for their long-term dedication to science.